Automatic Optimum Atlas Selection for Multi-Atlas Image Segmentation using Joint Label Fusion

نویسندگان

  • kofi agyeman
  • Kofi Agyeman
  • Lucas Parra
چکیده

. . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Manual image segmentation 2.2 Automatic image segmentation 2.3 Multi-atlas image segmentation 2.4 Label Fusion 2.5 Atlas selection 2.6 Automatic Optimum Atlas Selection (OAS) 3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Data and setup 3.1.1 Magnetic Resonance (MR) brain images dataset 3.1.2 Atlases and labels dataset 3.1.3 Computing and software infrastructure 3.2 OAS via global majority voting fusion image similarity score selection criteria 3.2.1 Atlas and target image pre-processing 3.2.2 Image registration and transformation 3.2.3 Global voting fusion image Optimum Atlas Selection (OAS) Framework 3.2.3.1 Consensus majority voting fusion segmentation 3.2.3.2 Dice similarity coefficient calculation (dSc) 3.2.3.3 Atlas selection criteria 3.2.4 OAS plus joint label fusion implementation 3.2.4.1 JLF Alpha (α) and Beta (β) parameters optimization 3.2.4.2 JLF search (rs) and patch (rp) size optimization 3.3 Leave-one out validation 4 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 Optimum atlas selection framework 5.1.1 Optimum image registration and label fusion image pad size 5.1.2 Image registration and transformation parameters optimization 5.1.3 Global Voting Optimum Atlas Selection (OAS) 5.1.3.1 Consensus Majority Segmentation 5.1.3.2 Atlas Selection 5.1.4 OAS plus joint label fusion implementation 5.1.4.1 Alpha (α) and Beta (β) parameters optimization 5.1.4.2 Search (rs) and patch (rp) radii size parameters optimization 5.1.4.3 Optimum Atlas Selection Result (Segmentation of LM Head MR Image) 5.2 Leave-one out validation 6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Automatic Optimum Atlas Selection for Multi-Atlas Image Segmentation using Joint Label Fusion Kofi Agyeman Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Appendix A – Table of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Appendix B Software installation instructions . . . . . . . . . . . . . . . . . . 30 Appendix C – Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Automatic Optimum Atlas Selection for Multi-Atlas Image Segmentation using Joint Label Fusion Kofi Agyeman

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation

Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a c...

متن کامل

Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion

Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopt...

متن کامل

Improving label fusion in multi-atlas based segmentation by locally combining atlas selection and performance estimation

In multi-atlas based segmentation, a target image is segmented by registering multiple atlas images to this target image and propagating the corresponding atlas segmentations. These propagated segmentations are then combined into a single segmentation in a process called label fusion. Multi-atlas based segmentation is a segmentation method that allows fully automatic segmentation of image popul...

متن کامل

Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection.

PURPOSE Cardiac computed tomography (CT) is widely used in clinical diagnosis of cardiovascular diseases. Whole heart segmentation (WHS) plays a vital role in developing new clinical applications of cardiac CT. However, the shape and appearance of the heart can vary greatly across different scans, making the automatic segmentation particularly challenging. The objective of this work is to devel...

متن کامل

Multi-atlas segmentation with augmented features for cardiac MR images

Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017